Some New Results on Optimal Codes Over F5
نویسندگان
چکیده
We present some results on almost maximum distance separable (AMDS) codes and Griesmer codes of dimension 4 over F5. We prove that no AMDS code of length 13 and minimum distance 5 exists, and we give a classification of some AMDS codes. Moreover, we classify the projective strongly optimal Griesmer codes over F5 of dimension 4 for some values of the minimum distance.
منابع مشابه
On self-dual codes over F5
The purpose of this paper is to improve the upper bounds of the minimum distances of self-dual codes over F5 for lengths 22, 26, 28, 32 − 40. In particular, we prove that there is no [22, 11, 9] self-dual code over F5, whose existence was left open in 1982. We also show that both the Hamming weight enumerator and the Lee weight enumerator of a putative [24, 12, 10] self-dual code over F5 are un...
متن کاملOptimal Linear Codes Over GF(7) and GF(11) with Dimension 3
Let $n_q(k,d)$ denote the smallest value of $n$ for which there exists a linear $[n,k,d]$-code over the Galois field $GF(q)$. An $[n,k,d]$-code whose length is equal to $n_q(k,d)$ is called {em optimal}. In this paper we present some matrix generators for the family of optimal $[n,3,d]$ codes over $GF(7)$ and $GF(11)$. Most of our given codes in $GF(7)$ are non-isomorphic with the codes pre...
متن کاملSome Optimal Codes From Designs
The binary and ternary codes spanned by the rows of the point by block incidence matrices of some 2-designs and their complementary and orthogonal designs are studied. A new method is also introduced to study optimal codes.
متن کاملComputational Results of Duadic Double Circulant Codes
Quadratic residue codes have been one of the most important classes of algebraic codes. They have been generalized into duadic codes and quadratic double circulant codes. In this paper we introduce a new subclass of double circulant codes, called duadic double circulant codes, which is a generalization of quadratic double circulant codes for prime lengths. This class generates optimal self-dual...
متن کاملSkew Hadamard designs and their codes
Skew Hadamard designs (4n−1, 2n−1, n−1) are associated to order 4n skew Hadamard matrices in the natural way. We study the codes spanned by their incidence matrices A and by I +A and show that they are self-dual after extension (resp. extension and augmentation) over fields of characteristic dividing n. Quadratic Residues codes are obtained in the case of the Paley matrix. Results on the p−rank...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Des. Codes Cryptography
دوره 30 شماره
صفحات -
تاریخ انتشار 2003